Edge disjoint Hamilton cycles in graphs

2000 ◽  
Vol 35 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Guojun Li
2020 ◽  
Vol 29 (6) ◽  
pp. 886-899
Author(s):  
Anita Liebenau ◽  
Yanitsa Pehova

AbstractA diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.


2018 ◽  
Vol 27 (4) ◽  
pp. 475-495
Author(s):  
JOSEPH BRIGGS ◽  
ALAN FRIEZE ◽  
MICHAEL KRIVELEVICH ◽  
PO-SHEN LOH ◽  
BENNY SUDAKOV

It is known that w.h.p. the hitting time τ2σ for the random graph process to have minimum degree 2σ coincides with the hitting time for σ edge-disjoint Hamilton cycles [4, 9, 13]. In this paper we prove an online version of this property. We show that, for a fixed integer σ ⩾ 2, if random edges of Kn are presented one by one then w.h.p. it is possible to colour the edges online with σ colours so that at time τ2σ each colour class is Hamiltonian.


2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Palanivel Subramania Nadar Paulraja ◽  
S Sampath Kumar

International audience The vertices of the Knödel graph $W_{\Delta, n}$ on $n \geq 2$ vertices, $n$ even, and of maximum degree $\Delta, 1 \leq \Delta \leq \lfloor log_2(n) \rfloor$, are the pairs $(i,j)$ with $i=1,2$ and $0 \leq j \leq \frac{n}{2} -1$. For $0 \leq j \leq \frac{n}{2} -1$, there is an edge between vertex $(1,j)$ and every vertex $(2,j + 2^k - 1 (mod \frac{n}{2}))$, for $k=0,1,2, \ldots , \Delta -1$. Existence of a Hamilton cycle decomposition of $W_{k, 2k}, k \geq 6$ is not yet known, see Discrete Appl. Math. 137 (2004) 173-195. In this paper, it is shown that the $k$-regular Knödel graph $W_{k,2k}, k \geq 6$ has $ \lfloor \frac{k}{2} \rfloor - 1$ edge disjoint Hamilton cycles.


1981 ◽  
Vol 22 (1) ◽  
pp. 42-45 ◽  
Author(s):  
J. A. Bondy ◽  
R. Häggkvist

2013 ◽  
Vol 46 (3) ◽  
pp. 397-445 ◽  
Author(s):  
Fiachra Knox ◽  
Daniela Kühn ◽  
Deryk Osthus

2018 ◽  
Vol 29 (03) ◽  
pp. 377-389 ◽  
Author(s):  
Parisa Derakhshan ◽  
Walter Hussak

In interconnection network topologies, the [Formula: see text]-dimensional star graph [Formula: see text] has [Formula: see text] vertices corresponding to permutations [Formula: see text] of [Formula: see text] symbols [Formula: see text] and edges which exchange the positions of the first symbol [Formula: see text] with any one of the other symbols. The star graph compares favorably with the familiar [Formula: see text]-cube on degree, diameter and a number of other parameters. A desirable property which has not been fully evaluated in star graphs is the presence of multiple edge-disjoint Hamilton cycles which are important for fault-tolerance. The only known method for producing multiple edge-disjoint Hamilton cycles in [Formula: see text] has been to label the edges in a certain way and then take images of a known base 2-labelled Hamilton cycle under different automorphisms that map labels consistently. However, optimal bounds for producing edge-disjoint Hamilton cycles in this way, and whether Hamilton decompositions can be produced, are not known for any [Formula: see text] other than for the case of [Formula: see text] which does provide a Hamilton decomposition. In this paper we show that, for all n, not more than [Formula: see text], where [Formula: see text] is Euler’s totient function, edge-disjoint Hamilton cycles can be produced by such automorphisms. Thus, for non-prime [Formula: see text], a Hamilton decomposition cannot be produced. We show that the [Formula: see text] upper bound can be achieved for all even [Formula: see text]. In particular, if [Formula: see text] is a power of 2, [Formula: see text] has a Hamilton decomposable spanning subgraph comprising more than half of the edges of [Formula: see text]. Our results produce a better than twofold improvement on the known bounds for any kind of edge-disjoint Hamilton cycles in [Formula: see text]-dimensional star graphs for general [Formula: see text].


2012 ◽  
Vol 22 (3) ◽  
pp. 394-416 ◽  
Author(s):  
DANIELA KÜHN ◽  
JOHN LAPINSKAS ◽  
DERYK OSTHUS

We study the number of edge-disjoint Hamilton cycles one can guarantee in a sufficiently large graph G on n vertices with minimum degree δ=(1/2+α)n. For any constant α>0, we give an optimal answer in the following sense: let regeven(n,δ) denote the degree of the largest even-regular spanning subgraph one can guarantee in a graph on n vertices with minimum degree δ. Then the number of edge-disjoint Hamilton cycles we find equals regeven(n,δ)/2. The value of regeven(n,δ) is known for infinitely many values of n and δ. We also extend our results to graphs G of minimum degree δ ≥ n/2, unless G is close to the extremal constructions for Dirac's theorem. Our proof relies on a recent and very general result of Kühn and Osthus on Hamilton decomposition of robustly expanding regular graphs.


2000 ◽  
Vol 34 (1) ◽  
pp. 42-59 ◽  
Author(s):  
B. Bollob�s ◽  
C. Cooper ◽  
T. I. Fenner ◽  
A. M. Frieze

1989 ◽  
Vol 576 (1 Graph Theory) ◽  
pp. 311-322
Author(s):  
HAO LI ◽  
YONGJIN ZHU

Sign in / Sign up

Export Citation Format

Share Document